Positive Mass Theorem for the Yamabe Problem on Spin Manifolds
نویسندگان
چکیده
Let (M, g) be a compact connected spin manifold of dimension n ≥ 3 whose Yamabe invariant is positive. We assume that (M, g) is locally conformally flat or that n ∈ {3, 4, 5}. According to a positive mass theorem by Schoen and Yau the constant term in the asymptotic development of the Green’s function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. The proof was simplified by Witten with the help of spinors. In our article we will give a proof which is even considerably shorter. Our proof is a modification of Witten’s argument, but no analysis on asymptotically flat spaces is needed. Mathematics Classification: 53C21 (Primary), 58E11, 53C27 (Secondary)
منابع مشابه
2 00 6 Compactness of solutions to the Yamabe problem . III YanYan
For a sequence of blow up solutions of the Yamabe equation on non-locally confonformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates ...
متن کاملCompactness of solutions to the Yamabe problem . III
For a sequence of blow up solutions of the Yamabe equation on non-locally conformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates wou...
متن کاملPrescribed Scalar Curvature problem on Complete manifolds
Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...
متن کاملAn Existence Theorem for the Yamabe Problem on Manifolds with Boundary Simon Brendle and Szu-yu
The Yamabe problem, solved by Trudinger [14], Aubin [1], and Schoen [12], asserts that any Riemannian metric on a closed manifold is conformal to a metric with constant scalar curvature. Escobar [8], [9] has studied analogous questions on manifolds with boundary. To fix notation, let (M,g) be a compact Riemannian manifold of dimension n ≥ 3 with boundary ∂M . We denote by Rg the scalar curvatur...
متن کاملOn the Multiplicity of Certain Yamabe Metrics
In this paper we are interested in the multiplicity of the Yamabe metrics for compact Riemannain manifolds. This problem may be approached only when the scalar curvature is positive. This is the case notably of certain locally conformally flat manifolds. Furthermore, there exists a link with the singular Yamabe problem. We give various applications of this study.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007